Awake reactivation predicts memory in humans.

نویسندگان

  • Bernhard P Staresina
  • Arjen Alink
  • Nikolaus Kriegeskorte
  • Richard N Henson
چکیده

How are new experiences transformed into memories? Recent findings have shown that activation in brain regions involved in the initial task performance reemerges during postlearning rest, suggesting that "offline activity" might be important for this transformation. It is unclear, however, whether such offline activity indeed reflects reactivation of individual learning experiences, whether the amount of event-specific reactivation is directly related to later memory performance, and what brain regions support such event-specific reactivation. Here, we used functional magnetic resonance imaging to assess whether event-specific reactivation occurs spontaneously during an active, postlearning delay period in the human brain. Applying representational similarity analysis, we found that successful recall of individual study events was predicted by the degree of their endogenous reactivation during the delay period. Within the medial temporal lobe, this reactivation was observed in the entorhinal cortex. Beyond the medial temporal lobe, event-specific reactivation was found in the retrosplenial cortex. Controlling for the levels of blood oxygen level-dependent activation and the serial position during encoding, the data suggest that offline reactivation might be a key mechanism for bolstering episodic memory beyond initial study processes. These results open a unique avenue for the systematic investigation of reactivation and consolidation of episodic memories in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory consolidation by replay of stimulus-specific neural activity.

Memory consolidation transforms initially labile memory traces into more stable representations. One putative mechanism for consolidation is the reactivation of memory traces after their initial encoding during subsequent sleep or waking state. However, it is still unknown whether consolidation of individual memory contents relies on reactivation of stimulus-specific neural representations in h...

متن کامل

Hippocampal sequences link past, present, and future.

Disrupting the reactivation of hippocampal neurons during sleep impairs memory consolidation in rats. However, the functional importance of reactivation during awake states is unknown. An experiment in which awake reactivation was disrupted suggests that this phenomenon could adaptively guide behavior by linking previous learning with the current state of the world.

متن کامل

Awake, Offline Processing during Associative Learning

Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for t...

متن کامل

Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories.

System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be ...

متن کامل

Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network

The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1-3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]-particularly in DMN regions [6-8]. Mechanistic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 52  شماره 

صفحات  -

تاریخ انتشار 2013